Фитогормоны у растений кратко. Реферат: Гормоны растений. Возраст маточного растения

Растительные гормоны, или фитогормоны – это химические вещества, вырабатываемые в растениях и регулирующие их рост и развитие

Имеют следующие особенности: эндогенное происхождение – образуются из органических кислот, в частности, из аминокислот; действуют не только в местах образования, но и на расстоянии от них, т.е. транспортируются по растениям; действуют в малых концентрациях.

Фитогормоны менее специфичны, чем гормоны животных, проявляют однотипное действие на одни и те же метаболические процессы: растяжение клеток или подавление их роста за счет торможения ионного транспорта; влияние на синтез ферментов и их активность; изменение проницаемости мембран растительных клеток; активация или ингибирование процессов биосинтеза РНК и белка.

В настоящее время известно семь групп фитогормонов: ауксины, гиббереллины, цитокинины, абсцизовая кислота, этилен, брассиностероиды, фузикокцины.

Ауксины были открыты в 20-е годы ХХ века как фактор тропизмов растений. Химическая природа – индолил-3-уксусная кислота (ИУК). Стимулируют образование корневой системы у черенков, применяют при выращивании плодовых деревьев – для удаления избыточных завязей, при выращивании зерновых культур – для уничтожения сорняков.

Гиббереллины были открыты в 1926 г. В 1938 г. в Японии они были выделены как продукты патогенного гриба Gibberella fujjcuroi , которые вызывают чрезмерный вегетативный рост риса. Химическая природа – дитерпеноиды, состоящие из четырех изопреновых остатков. Известно около 70 представителей, в т.ч. 45 – выделены из растений. Применяют для повышения урожайности некоторых сортов винограда, для защиты ягод от фитопатогенных грибов. Способны выводить семена и клубни из состояния покоя.

Цитокинины были открыты в 1955 г. как факторы, стимулирующие деление клеток. Известно 13 представителей. Химическая природа – производные 6-аминопурина. Задерживают старение листьев, регулируют формирование хлоропластов, повышают устойчивость клеток растений к неблагоприятным воздействиям (повреждающим температурам, недостатку воды, повышенной засоленности, рентгеновскому излучению, воздействию пестицидов). Способны выводить семена и клубни из состояния покоя.

Этилен – бесцветный газ, растворимый в воде. В 1901 г. Д.Н. Нелюбов из Петербургского университета сообщил о том, что этилен, входящий в состав светильного газа, стимулирует опадение листьев и нарушает фототропизм проростков гороха. В 1934 г. этиле был обнаружен в газообразных выделениях хранящихся яблок. Это послужило основанием для того, чтобы считать его фитогормоном. Его синтезируют грибы и высшие растения. По мере старения тканей синтез этилена увеличивается. Этот гормон стимулирует процессы опадания листьев и плодов. Этилен и его производные применяют для ускоренного созревания плодов. Разработан препарат э с т р е л, который при попадании в растение выделяет этилен. Эстрел применяют для регуляции созревания томатов, вишен и других овощей и фруктов. Стимулирует образование абсцизовой кислоты.

Абсцизовая кислота (АБК) выделена в 1964 г. из молодых коробочек хлопчатника. Химическая природа – секвитерпен, синтезируется из мевалоновой кислоты во всех органах растений. Является антагонистом других фитогормонов. Обладает мощным ингибиторным действием – ускорят распад нуклеиновых кислот, белков, хлорофилла. Инициирует синтез стрессовых белков. Они ответственны за обезвоживание семян, что обеспечивает их покой.

Брассиностероиды. Химическая природы – стероиды. Регулирует рост семяпочки, стимулирует ее развитие и образование семян; стимулируют устойчивость к стрессам и грибным заболеваниям.

Фузикокцины. Химическая природа – стероиды. Выводит семена из состояния покоя, ускоряет их прорастание.

Фитогормоны активно влияют на синтез, распад и транспорт друг друга. Поэтому изменение уровня одного фитогормона приводит к изменению всех фитогормональной системы.

Фиторегуляторы

Фиторегуляторы – это природные и синтетически препараты, которые вызывают различные ростовые или формативные эффекты и не обладают действием удобрений и гербицидов. Известно около 5 тыс. соединений, которые обладают регуляторной активностью, однако в практике применяется лишь несколько десятков (около 1%).

Фиторегуляторы регулируют: дифференцировку клеток; клеточные деления; образование новых тканей и органов; темпы роста и развития растений; продуктивность растений; качество урожая.

Фиторегуляторы влияют на фитогормональную систему растений следующим образом: повышение уровня фитогормона при введении извне его аналога; стимулирование или подавление биосинтеза фитогормона; блокирование транспорта фитогормона; стимулирование или подавление системы инактивации фитогормона; конкуренция за присоединение к рецептору фитогормона; инактивация фитогормонрецепторного комплекса.

В сельском хозяйстве и биотехнологии растений применяют синтетические регуляторы – аналоги и антагонисты всех групп фитогормонов. Некоторые регуляторы могут вызывать нарушения хромосом. Такие препараты нельзя использовать в промышленном масштабе в целях сохранения генофонда растений.

Вопросы для самоконтроля

1) Преимущества бактериальных удобрений перед химическими средствами повышения урожайности растений.

2) Какие группы бактериальных удобрений Вам известны?

3) Дайте характеристику бактериальных удобрений на основе активных жизнеспособных бактерий из рода Rhizobium (нитрагин и ризоторфин).

4) Дайте характеристику бактериальных удобрений, содержащих свободно-живущий почвенный микроорганизм азотобактер – Azotobacter chroococcum (флавобактерин и ризоэнтерин).

5) Дайте характеристику бактериальных удобрений ризобактерина и экстрасола.

6) Дайте характеристику бактериального удобрения фосфоробактерина, содержащего споры капустной палочки Bacillus megaterium var. phosphaticum .

7) Дайте характеристику биологически активного грунта АМБ.

8) Какова роль грибов-микоризообразователей в повышении урожайности растений?

9) Роль фиторегуляторов в повышении урожаности сельскохозяйсвтеных культур.

СПИСОК ЛИТЕРАТУРЫ

Основная

1. Блинов, В.А. Общая биотехнология: Курс лекций. В 2-х частях. Ч. 2. – Саратов: ФГОУ ВПО «Саратовский СГАУ», 2004. – 144 с. – ISBN 5-7011-0436-2

2. Елинов, Н.П. Основы биотехнологии / Н.П. Елинов. – СПб.: Наука, 1995. – ISBN 5-02-026027-4

3. Клунова, С.М. Биотехнология: учебник / С.М. Клунова, Т.А. Егорова, Е.А. Живухина. – М.: Академия, 2010. – 256 с. – ISBN 978-5-7695-6697-4

4. Сельскохозяйственная биотехнология / Шевелуха В.С. и др. – М.: Высшая школа, 2003. – 427 с. – ISBN: 5-06-004264-2

5. Тарантул, В.З. Толковый биотехнологический словарь русско-английский: справочное издание [Электронный ресурс] / В.З. Тарантул. – М.: Языки славянских культур, 2009. – 936 с. – ISBN: 978-5-95-51-0342-6 – Доступ с сайта научной библиотеки СГАУ – ЭБС IPRbooks

Дополнительная

1. Биологические препараты. Сельское хозяйство. Экология: Практика применения / ООО «ЭМ-Кооперация» / сост.: Костенко Т.А., Костенко В.К.; под ред. П.А. Кожевина. – Саранск: ГУП РМ «Республиканская типография «Красный Октябрь», 2008. – 296 с. – ISBN 978-5-7493-1236-2

2. Биотехнология: учебное пособие для вузов, в 8 кн., под ред. Егорова Н.С., Самуилова В.Д. – М., 1987.

3. Блинов, В.А. Биотехнология (некоторые проблемы сельскохозяйственной биотехнологии) / В.А. Блинов. – Саратов: ОГУП «РИК «Полиграфия Поволжья», 2003. – 196 с.

4. Блинов, В.А. ЭМ-технология – сельскому хозяйству / В.А. Блинов. – Саратов, 2003. – 205 с.

5. Журнал «Биотехнология» (аннотации статей) (ссылка доступа – http://www.genetika.ru/journal)

6. Интернет-журнал «Коммерческая биотехнология» (ссылка доступа – http://cbio.ru)

7. Оn-line-журнал «Биотехнология. Теория и практика» (ссылка доступа – http://www.biotechlink.org)


Решающая роль в регулировании роста и развития в настоящее время отводится фитогормонам - веществам, образующимся внутри растений, обладающим большой физиологической активностью, способностью к передвижению из места образования в другие органы и ткани и вызывающим специфический ростовой или формообразовательный эффект.

Регуляторы роста и развития - это органические соединения иного типа, чем питательные вещества, вызывающие стимуляцию (усиление) или ингибирование (ослабление) процессов роста и развития. Они могут быть как природными веществами (фитогормоны, образующиеся внутри растений), так и синтезированными человеком препаратами, используемыми в растениеводстве.

Фитогормоны влияют на деление и растяжение клеток, образование корней на побегах (черенках), дифференциацию тканей, апикальное доминирование, геотропическую и фототропическую реакции растений, переход к цветению, покою и выход из состояния покоя.

У растений выделено пять групп (классов) фитогормонов - ауксины, гиббереллины, цитокинины, ингибиторы роста и этилен .

Ауксины - фитогормоны преимущественно индольной природы: индолилуксусная кислота и ее производные (50), вызывающие растяжение клеток, активирующие рост отрезков колеоптилей, стеблей, листьев и корней, вызывающие тропические изгибы, стимулирующие образование корней у черенков растений. Ауксины синтезируются в апикальной меристеме и в растущих тканях.

Гиббереллины (ГК) - фитогормоны - преимущественно гибберел- ловая кислота ГК3 (51) и другие гиббереллины (их известно более 50), - стимулирующие деление или растяжение клеток, индуцирующие или активирующие рост стебля, прорастание семян, образование партенокарпических плодов, нарушающие период покоя и индуцирующие цветение длинно дневных видов. Синтезируются в молодых листьях, молодых семенах, плодах, в верхушках корней.

Цитокинины - фитогормоны, главным образом производные пуринов (52), стимулирующие деление клеток, прорастание семян, способствующие заложению почек у целых растений и изолированных тканей. Источниками цитокининов служат плоды и ткани эндосперма.

Кроме веществ гормональной природы свойством стимулировать рост и развитие растений обладают и некоторые природные соединения негормональной природы - витамины, некоторые фенолы, произволные мочевины и другие вещества. Как и фитогормоиы, они образуются в растениях в очень малых количествах, но обладают лишь частью регу- ляториых свойств фитогормонов. Так. не все витамины могут транспортироваться по растению, а ростовой и формативный эффект они окашивают лишь в сочетании с фитогормонами. Таким образом, они могут быть отнесены к группе сопутствующих регуляторов с синергистиче- ским принципом действия, усиливающим действие фитогормонов.

Все природные фитогормоны, стимулирующие рост растений, - ауксины, гиббереллины, цитокинины и негормональные соединения со стимулирующим действием объединяются понятием ростовые вещества.

В практике растениеводства широко используются синтетические регуляторы роста, также стимулирующие рост и развитие. Все регуляторы роста, активирующие отдельные фазы роста и органогенеза растений, т. е. природные ростовые вещества и синтезированные, объединяются в группу стимуляторов роста. Синтетическими аналогами фитогормонов - ауксинов и цитокининов - являются а-нафтилуксусная кислота (а-НУК), О-инцолилмасляная кислота (0-ИМК), 2,4-дихлор- феноксиуксусная кислота (2,4-Д), кинетин, 6-бензиламинопурии (6- БАП). Стимуляторы роста типа ауксинов (а-НУК, (3-ИМК, 2,4-Д) применяют для активации корнеобразования, опадения листьев, плодов; типа гиббереллинов - для стимуляции роста стеблей и увеличения размеров цветков и плодов; типа цитокининов (кинетин, 6-БАП) -для активации роста культуры тканей.

В статье даются основополагающие сведения о фитогормонах и их роли в организме растений на всех этапах их жизненного цикла, в т.ч. приводится их классификация, дается краткая характеристика их природы и свойств, а также рассматриваются в общих чертах механизмы их воздействия на различных уровнях организма растений в процессе их роста, развития и реакции на воздействие факторов окружающей среды. Тема рассматривается с привязкой к агропрепаратам - регуляторам роста.

ОБЩИЕ СВЕДЕНИЯ

Фитогормонами называют вещества, вырабатываемые растениями для управления собственным ростом и развитием, а также реакцией на воздействия окружающей среды. Фитогормоны управляют прорастанием семян, образованием и ростом корней, побегов и листьев, цветением, завязыванием и ростом плодов и, наконец, торможением всех процессов обмена веществ в конце сезона с окончательным увяданием всего растения или его переходом в зимнюю спячку. Кроме того, они отвечают за адаптацию растений к таким факторам, как гравитация, освещение, температурный режим, недостаток влаги и питания, а также за сопротивляемость вредителям и инфекциям.

У растений нет специальных органов для выработки фитогормонов, аналогичных железам внутренней секреции у животных. Фитогормоны вырабатываются непосредственно клетками тканей растений, однако при этом существует определенное распределение зон выработки, т.е. одни фитогормоны вырабатываются, премущественно, в верхушках растений, другие в корнях, третьи в листьях и т.д. Необходимый для начального роста запас фитогормонов присутствует в семенах.

Фитогормоны делятся на категории в зависимости от химической структуры и спектра действия. Интернет-источники для садоводов обычно ограничиваются рассмотрением пяти-шести наиболее известных, однако современная наука насчитывает уже не менее 9-ти хорошо изученных категорий: ауксины, цитокинины, гиббереллины, брассиностероиды, жасмонаты, салицилаты, стриголактоны, абсцизиновую кислоту и этилен. Кроме того, имеются еще и недостаточно изученные категории полипептидных фитогормонов (системин и др.) и фитогормонов-полисахаринов. Процесс открытия новых фитогормонов продолжается.

Спектр действия фитогормонов разнообразен и каждый из них выполняет не одну, а несколько функций, зависящих от типа растительной ткани, места воздействия и внешних условий. Более того, фитогормоны, по большей части, работают не в одиночку, а в тесном взаимодействии друг с другом, образуя перекрестные связи. Полное рассмотрение всех сторон и механизмов их функционирования требует серьезной начальной подготовки и весьма объемно, поэтому ограничимся лишь кратким обзором наиболее важных моментов.

АУКСИНЫ И ЦИТОКИНИНЫ

Ауксины и цитокинины в большинстве популярных публикаций рассматривают как независимые компоненты гормональной системы с различными функциями. На самом же деле они имеют, в основном, идентичные, но зеркально-симметричные функции и действуют совместно, а эффект их воздействия на базовые процессы роста и развития определяется их суммарным балансом в тканях. В частности:

  • ауксины формируются в растущем апексе (верхушке) побега и распространяются по транспортной системе в сторону апекса корня, стимулируя в нем формирование цитокининов, а цитокинины формируются в растущем апексе (верхушке) корня и распространяются по транспортной системе в сторону апекса побега, стимулируя в нем формирование ауксинов;
  • ауксины и цитокинины совместно стимулируют деление клеток и рост их в длину, изменение свойств клеток (дифференцировку) после деления с образованием тканей других типов, а также поступление в меристемы (зоны роста) необходимых питательных веществ;
  • ауксины подавляют развитие боковых побегов и стимулируют образование боковых корней и корневых придатков стебля, в то время, как цитокинины подавляют развитие боковых корней и стимулируют развитие боковых побегов;

Функции ауксинов и цитокининов

Именно благодаря такой зеркальной симметрии росторегулирующих функций ауксинов и цитокининов и их совместному действию формируется требуемая форма кроны и корня, а также регулирование соотношения их размеров по длине и диаметру.

Однако у этих фитогормонов есть и асимметрия, в частности:

  • в стимуляции деления клеток ведущая роль принадлежит цитокининам, а в росте клеток растяжением в длину - ауксинам, хотя в обоих случаях обязательно необходимы оба фитогормона;
  • цитокинины стимулируют открытие дыхательных устьиц листьев, являясь индикатором нормального поступления воды от корней, а также выполняют ряд других специфических функций, связанных с цветением и образованием семян;
  • благодаря ведущей роли ауксинов в стимуляции роста клеток в длину именно они ответственны за процессы гео-, фото- и тигмотропизма.

Функция, связанная с тропизмами, необходима для правильной ориентации растения относительно внешних факторов - гравитации, света и опор (для вьющихся растений). Она реализуется перераспределением ауксинов в поперечном сечении, вследствие чего клетки с разных сторон органов удлиняются по-разному, что приводит к изгибу органов в нужную сторону. Тропизмы представляют особый интерес, но их подробное рассмотрение является предметом отдельной публикации.

Наиболее распространенными из ауксинов являются индолил-3-уксусная кислота - гетероауксин , и индолил-3-масляная кислота . Как и все другие ауксины, они являются производными индола , что отражено в их наименовании. Цитокинины по своей химической природе являются производными 6-аминопурина (аденина ), наиболее распространенными из которых являются зеатин , 6-бензиламинопурин и 6-изопентиниламинопурин .

Химическая структура ауксинов и цитокининов

Синтетические аналоги ауксинов используются в регуляторах роста - стимуляторах корнеобразования. В частности, индилол-3-уксусная кислота является основой одноименных препаратов Гетероауксин, производимых фирмами Ортон и Техноэкспорт, а ее калиевая соль служит основой препарата Корнерост. Другой ауксин - индолил-3-масляная кислота является основой популярного препарата Корневин и его аналогов - препаратов Корнестим, Укоренитъ и Корень-супер. Следует иметь в виду, что недостаточная доза ауксина может не обеспечить требуемый эффект, а излишняя может привести к угнетению растения, т.к. высокие дозы ауксина стимулируют синтез этилена (см. ниже).

Природные цитокинины и их синтетические аналоги в настоящее время в регуляторах роста не используются. В то же время нашел применение ряд веществ - производных фенилмочевины, обладающих цитокининовым эффектом. Наиболее известным в этой категории является зарубежный регулятор роста - дефолиант тидиазурон (дропп) , предназначенный, в основном, для хлопчатника (в настоящее время в РФ не разрешен). Отечественным препаратом аналогичного действия является цитодеф (также в настоящее время в РФ не разрешен).

ГИББЕРЕЛЛИНЫ

Гиббереллины образно именуются «гормонами благополучия зеленого листа», поскольку синтезируются, по большей части, в листовых зачатках (примордиях) и в молодых листьях, откуда транспортируются к нужным органам. Необходимый для прорастания и начального роста запас гиббереллинов содержится в семенах. По сравнению с ауксинами и цитокининами гиббереллины являются несколько более сложными веществами и разнообразие их существенно выше (более 80 видов, по некоторым данным до 120).

Гиббереллины способствуют одновременному росту и делению клеток, но механизм их действия иной, чем у ауксинов и цитокининов, и воздействуют они, в основном, на другие клетки, в первую очередь стимулируя рост в длину междоузлий, на рост которых ауксины и цитокинины не влияют. Это их наиболее значимая функция, хорошо наблюдаемая в экспериментах. Кроме того, гиббереллины также причастны к стимуляции процессов прорастания семян, цветения, закладки пола цветков, опыления и в некоторых других. Однако наиболее известной и практически востребованной является функция стимуляции образования завязей, в связи с чем они используются в качестве основы регуляторов роста - стимуляторов плодообразования.

Функции и химическая структура гиббереллинов

По химической природе гиббереллины являются производными гиббереллиновых кислот , называемых также гибберреловыми и обозначаемых аббревиатурой GA (от giberellic acid ) с добавлением порядкового номера. Самой распространенной является кислота GA3, менее распространены GA1, GA4, GA5, GA7 и GA8. Производные натуральных гиббереллиновых кислот широко используются в качестве основы регуляторов роста - стимуляторов плодобразования, в частности, препаратов Завязь, Бутон, Гибберсиб, Гибберросс, Плодостим, Расцвет и Цветень.

БРАССИНОСТЕРОИДЫ

Брассиностероиды присутствуют в каждой клетке растений, но в исключительно малых количествах. Их разнообразие достаточно велико (более 60). Наиболее известной их разновидностью является брассинолид - первый из обнаруженных брассиностероидов.

Роль брассиностероидов пока изучена далеко не полностью. Однако в целом можно констатировать, что они усиливают действие других фитогормонов - продлевают рост и деление клеток, вызываемых ауксинами, цитокининами и гиббереллинами, усиливают реакции тропизмов, способствуют дифференцировке тканей, повышают чувствительность и эффективность защитных систем растений по отношению к отрицательным факторам окружающей среды, выступая таким образом в роли адаптогенов, в т.ч. иммуномодуляторов и антистрессантов. Однако действие брассиностероидов на разные растения может быть различным, а в ряде случаев противоположным действию остальных фитогормонов.

Функции и химическая структура брассиностероидов

Использование брассиностероидов в качестве основы регуляторов роста считается весьма перспективным, т.к. они оказывают комплексное стимулирующее воздействие на многие системы и органы растений при весьма малых концентрациях. Однако разработка таких препаратов достаточно сложна, в т.ч. в связи со сложностью получения брассиностероидов из природного сырья, что влечет необходимость его замены синтетическими аналогами. В РФ пока выпускается только один препарат такого типа - Эпин-экстра на основе 24-эпибрассинолида - синтетического аналога природного брассинолида .

ЖАСМОНАТЫ

Жасмонаты в растениях выполняют несколько функций, которые условно можно поделить на две категории:

Функции, связанные с защитой от внешних неблагоприятных факторов, в т.ч.:

  • поддержание (в синергизме с абсцизовой кислотой) водного тургора клеток тканей путем закрытия дыхательных устьиц при водном дефиците;
  • активацию (в синергизме с этиленом) процессов заживления механических повреждениий тканей;

Функции, связанные с завершением вегетационного периода, в т.ч.

  • подавление процессов образования хлоропластов (носителей хлорофилла);
  • стимуляция процессов накопление запасных белков в клубнях, луковицах и семенах.

Функции и химическая структура жасмонатов

К категории жасмонатов относятся жасминовая кислота , называемая также жасмоновой , и некоторые ее эфиры, наиболее распространенным из которых является метиловый эфир - метилжасмонат . В настоящее время жасмонаты в препаратах для регулирования роста или улучшения защитных функций растений не используются.

САЛИЦИЛАТЫ

Салициллаты выполняют функцию активации механизмов защиты растения от патогенных мкроорганизмов, действуя при этом в синергизме с жасмонатами и этиленом. Сигналом к аткивации этих механизмов служит повреждение тканей растения, вызываемое патогенами. В результате, кроме синтеза жасминовой кислоты, описанного выше, запускается синтез салицилатов, которые далее активируют две цепочки иммунных реакций:

  • запуск механизма т.н. сверхчувствительности , в результате чего стимулируется ускоренная гибель поврежденных клеток растения и патогены локально лишаются источника питания;
  • запуск глобального механизма синтеза антипатогенных белков (PR-белков, от pathogenesis-related proteins), подавляющих вредоносные микроорганизмы и создающих барьеры для их проникновения в ткани, т.е. стимуляция активности иммунной системы растения в целом.

Функции и химическая структура салицилатов

Самым распространенным салицилатом является салициловая кислота - близкий родственник ацетилсалициловой кислоты , т.е. всем известного аспирина. Исследования влияния обработки салицилатами на иммунитет растений ведутся достаточно широким фронтом, однако на сегодня регуляторов роста - адаптогенов на основе или с добавлением салицилатов нет. В то же время в народной практике с определенным успехом для укрепления и оздоровления ослабленных растений применяется богатый салицилатами настой ивовой коры, а некоторые регуляторы роста (например, Альбит) содержат действующие вещества, запускающие синтез в тканях растений салицилатов, запуская таким образом глобальный иммунный механизм.

АБСЦИЗОВАЯ КИСЛОТА

Если ауксины, цитокинины, гиббереллины и брассиностероиды выполняют все «созидательные» функции, стимулируя рост и деление клеток и, соответственно, рост и развитие растений и их органов, а также активацию их систем и жизненных процессов, и поэтому на схеме обозначены «живым» зеленым цветом, то абсцизовая кислота в первую очередь причастна к процессам торможения жизнедеятельности, причем, как при завершения цикла вегетации, так и при возникновении неблагоприятных условий - похолодания, недостатка влаги, засоленности почвы.

Абсцизовая кислота выполняет следующие функции:

  • при пониженных температурах и недостатке влаги тормозит все реакции, вызванные ауксинами, цитокининами и гиббереллинами, в т.ч. останавливает рост растения и раскрытие почек, уменьшает транспирацию, закрывая устьица, стимулирует опадение листьев;
  • регулирует состояние физиологического покоя деревьев в середине периода вегетации, в. т.ч. блокирует апикальное доминирование ауксинов, разрешая раскрытие боковых почек и рост боковых побегов;
  • регулирует состояние покоя семян, в т.ч. обеспечивает их обезвоживание и ингибирует прорастание в отсутствие влаги;

Для производства регуляторов роста в настоящее время абсцизовая кислота не используется.

Функции и химическая структура абсцизовой кислоты

ЭТИЛЕН

Этилен образуется, практически, во всех тканях и его действие проявляется на всех этапах жизненного цикла растения - от прорастания семян до созревания плодов. Образовываться этилен может как в результате реакции на внешние механические воздействия, так и в соответствии с фазами вегетационного цикла. В первом случае он выполняет следующие наиболее важные функции:

  • оптимизирует геометрические параметры проростка в случае упирания его в препятствия в процессе прорастания;
  • выступает синергистом в запуске механизмов защитных реакций на механические повреждения, способствуя образованию в тканях жасмонатов и салицилатов;
  • стимулирует образование т.н. раневой перидермы - пробкоподобной отделительной прослойки либо между поврежденными и здоровыми тканями, либо в основании поврежденного листа или плода, в результате чего поврежденные ткани, листья или плоды вместе с повредившими их вредителями или патогенами отделяются от растения и опадают;
  • непосредственно подавляет некоторые патогены, например, возбудители ржавчин ;
  • стимулирует опадение ненужных органов оплодотворенных цветков с началом образования завязи в результате ее механического давления на окружающие ткани;

Во втором случае этилен тормозит процессы роста в конце вегетационного периода, в т.ч. стимулирует разрушение хлорофилла и старение листьев с образованием отделительной перидермы в их основании, а также стимулирует процессы созревания плодов по окончании их роста с образованием такой же, как у листьев, отделительной перидермы в их основании.

Кроме того, у ряда культур этилен может вызывать специфические реакции, например преимущественное образование цветков одного пола.

Функции и химическая структура этилена

Продуцируемый растениями этилен может распространяться не только по сосудистой системе растений, но и через атмосферу, что резко сокращает время реакции, а также синхронизирует процессы, вызываемые этиленом, в рядом расположенных растениях и плодах. Это свойство широко используется в быту для ускорения дозревания томатов, когда вместе с зелеными кладут несколько спелых, этиленом которых стимулируется дозревание остальных. Обработка овощей и фруктов этиленом широко практикуется в промышленных масштабах для стимуляции дозревания недозрелых плодов и придания им товарного вида после их хранения или транспортировки.

В чистом виде применение этилена в агропрепаратах - регуляторах роста в связи с его летучестью невозможно. Поэтому растения обрабатывают т.н. этиленпродуцентами , т.е. препаратами, выделяющими этилен при контакте с тканями растений. На данный момент в этом качестве используется 2-хлорэтилфосфоновая кислота , на основе которой производятся препараты ХЭФК (Скороспел), Дозреватель и Зеленец. Первые два препарата предназначены для ускорения дозревания томатов и лука, а последний - для повышения завязываемости и ускорения выхода ранней продукции огурцов.

ПРОЧИЕ ФИТОГОРМОНЫ

Выше были рассмотрены основные, достаточно известные фитогормоны. Менее известны стриголактоны, полипептиды и полисахарины .

СТРИГОЛАКТОНЫ

Стриголактоны образуются в корнях растений при недостатке элементов минерального питания - азота, фосфора и других. Они транспортируются в надземную часть и в целях экономии минерального питания тормозят рост боковых побегов. Одновременно они стимулируют выделение в почву веществ-аттрактантов, привлекающих в корневую систему грибы-симбионты, улучшающие снабжение корней недостающими минеральными веществами.

ПОЛИПЕПТИДНЫЕ ФИТОГОРМОНЫ

Полипептидные фитогормоны обнаруживаются не у всех растений и при этом могут выполнять различные функции. В частности, у томатов и картофеля имеется полипептидный фитогормон системин , участвующий в запуске глобальной иммунной реакции в ответ на механические повреждения. У ряда других растений обнаруживется полипептидный фитогормон фитосульфокин , участвующий в процессах деления клеток и образования боковых корней и побегов. Известны фитогормоны этой категории, управляющие размером апикальной зоны роста побега, блокирующие процессы самоопыления, а также ряд других.

ОЛИГОСАХАРИНЫ

Олигосахарины в организме растений образуются в результате расщепления полисахаридов клеточных стенок. На сегодня известно, что фитогормоны этой категории участвуют в процессах стимуляции созревания.

Процесс открытия новых фитогормонов и новых свойств уже известных фитогормонов продолжается.

РЕЗЮМЕ

Как видно, фитогормоны выполняют в организме растений очень широкий спектр функций, связанных с саморегулированием их роста и сбалансированного развития их органов, с адаптивными реакциями как на жизненно важные, так и на негативные факторы внешней среды, с созреванием плодов, с образованием семян, сезонным увяданием и пр. При этом их действие носит комплексный характер со множеством взаимных перекрестных связей, синергизмом, антагонизмом и прочими эффектами. Знание и понимание этих сложных механизмов играет важную роль в разработке агротехнологий, в т.ч. в разработке и применении специальных агропрепаратов для регулирования роста и развития культур.

Фитоэстрогены - это особые растительные вещества, по химической структуре сходные с эстрогенами. Эстрогены - половые гормоны, оказывающие сильное феминизирующее действие.

Фитоэстрогены объединяют целую группу химических субстанций, таких как флавоны, изофлавоны, куместаны и лигнаны. Эти вещества не являются ни гормонами растений, ни эстрогенами, но в человеческом организме способны вызывать эффекты, подобные половым гормонам .

Изофлавоны - природные компоненты, содержащиеся в некоторых продуктах питания и травах, таких как соя, клевер. Данные вещества относятся к фитоэстрогенам. Изофлавоны являются частью рациона человека, обладают метаболическими и антиканцерогенными свойствами.

Механизм действия

По своему строению фитоэстрогены имеют сходство с эстрадиолом. Благодаря этому, они могут проявлять себя и как эстрогены, и как антиэстрогены. Эти вещества обнаружены в 1926, но до 1950-х годов их влияние оставалось неизученным. Впервые было замечено, что у овец, которые пасутся на пастбищах, богатых клевером (растение с большим количеством фитоэстрогенов), снижена плодовитость.

Основной механизм действия фитоэстрогенов - связывание с эстрогеновыми рецепторами, которые существует в двух видах: альфа и бета. Многие растительные эстрогены имеют гораздо большее сродство именно с рецепторами типа бета. Влияние фитоэстрогенов на организм примерно в 500-1000 слабее, чем действие человеческих гормонов.

Основными структурными элементами молекулы растительного гормона, которые объясняют его высокое сродство с эстрогеном, являются:

  • фенольное кольцо;
  • кольцо изофлавонов, которое имитирует кольцо эстрогенов в месте контакта с рецептором;
  • низкая молекулярная масса соединения, аналогичная женским половым гормонам;
  • расстояние между двумя гидроксильными группами ядра изофлавонов, которое схоже с эстрадиолом.

Кроме феминизирующего влияния, фитогормоны могут оказывать и антиэстрогенное действие. У здоровой женщины с нормальным гормональным фоном, эстрогены растительного происхождения конкурируют с ее личными гормонами. Они занимают те рецепторы, которые могли задействовать природные гормоны.

Продукты, содержащие фитоэстрогены

Согласно исследованию Л. У. Томпсона и Б. А. Букера, опубликованного в 2006 году, список продуктов, которые содержат фитоэстрогены, возглавляют орехи и масличные культуры. Вслед за ними идут продукты сои, крупы и хлеб с отрубями, бобовые, мясные и другие пищевые культуры. Наибольшее количество изофлавона содержится в сое и иных бобовых. Лигнановые фитоэстрогены в продуктах питания находятся в семени льна, орехах, фруктах (цитрусовых, вишнях, яблоках) и овощах (брокколи, шпинате, чесноке и зелени петрушки).

Наилучше были изучены фитоэстрогены, которые находятся в сое: изофлавоновые вещества дайдзеин и генистеин. Эти вещества присутствуют в растении в форме гликозидов. Благодаря действию бактерий человеческого кишечника, соединение распадается на части. Не все продукты распада вызывают клеточный эстрогенный ответ, основной вклад в гормональное действие сои вносит эквол (видоизмененный продукт дайдзеина).

Для увеличения бюста издавна советовали есть капусту. Все ее виды (белокочанная, цветная, брюссельская и брокколи) содержат большое количество фитоэстрогенов, которые могут повысить гормональный фон.

Молочные продукты также содержат природные эстрогены. Сыры с плесенью обладают большим количеством этих веществ, что обусловлено действием особого грибка.

Любые семечки и орехи также вмещают большое количество фитоэстрогенов. Фитостеролы, которые обладают гормональной активностью, находятся в ростках пшеницы, оливковых и пальмовых маслах, а также в масле кокоса. Сухофрукты, такие как курага, чернослив и финики, также повышают эстроген.

В пищу люди употребляют не только продукты с фитоэстрогенами, но и напитки с этими гормонами. В красном вине содержится ресвератрол, который проявляет высокую антиоксидантную активность. Из кожуры винограда и его семян получают пикногерол. В шишечках хмеля, из которых делают пиво,присутсвтует 8-пренилнарингенин, который по активности в 10 раз превосходит остальные фитоэстрогены.

Таблица

Сравнительное количество фитоэстрогенов в источниках питания (мкг / г)

1 мкг = 0.000001 г

Источники Количество мкг на 100 г продукта
Семя льна 379380 мкг
Соевые бобы 103920 мкг
Соевый йогурт 10275 мкг
Кунжутное семя 8008,1 мкг
Льняной хлеб 7540 мкг
Соевое молоко 2957,2 мкг
Хумус 993 мкг
Чеснок 603,6 мкг
Курага 444,5 мкг
Фисташки 382,5 мкг
Финики 329,5 мкг
Подсолнечные семечки 216 мкг
Каштаны 210,2 мкг
Оливковое масло 180,7 мкг
Миндаль 131,1 мкг
Кешью 121,9 мкг
Зеленая фасоль 105,8 мкг
Арахис 34,5 мкг
Лук 32 мкг
Ягоды черники 17,5 мкг
Кукуруза 9 мкг
Кофе 6,3 мкг
Арбуз 2,9 мкг
Коровье молоко 1,2 мкг

Таблица изофлавонов

Пищевые источники изофлавонов (мкг / г)

Группа продуктов питания Общее количество изофлавонов Дайдзеин Генистеин Глицетин
Соя 1176-4215 365-1355 640-2676 171-184
Жареные соевые бобы 2661 941 1426 294
Соевая мука 2014 412 1453 149
Изолят белка 621-987 89-191 373-640 159-156
Тофу 532 238 245 49
Соевая хот-дог 236 55 129 52
Соевый бекон 144 26 83 35
Сыр Чеддер 43-197 0-83 4-62 39-52
Сыр Моцарелла 123 24 62 52
Тофу йогурт 282 103 162 17
Соевый напиток 28 7 21 -

Травы с растительными эстрогенами

Красный клевер. Фитоэстрогены цветов и травы клевера содержат изовлавоновые и куместановые соединения. Пока нет исследований, которые показали бы, что это растение можно безопасно применять для профилактики климактерических расстройств.

Солодка. Корни этого растения содержат изофлавон, который называется глабридин. В малых дозах он стимулирует пролиферацию раковых клеток, а в высоких - подавляет их.

Люцерна. Эстрогены в травах люцерны представлены куместролом и небольшим количеством формононетина. Как и головки красного клевера, эта трава может вызывать нарушение репродуктивной способности у овец. Влияние этого растения на людей также недостаточно изучено.

Лен. Эта трава в больших количествах содержит женские фитогормоны лигнановой группы. В кишечнике человеческого организма травяные эстрогены преобразовуются в энтеродиол и энтеролактон.

Эффект фитоэстрогенов

Фитоэстрогены в малых дозах имеют такое же биологическое действие, как и эндогенные гормоны. Их воздействие на организм во многом зависит от пола и возраста, человека, который употребляет продукты с фитоэстрогенами.

  • Влияние на молодых женщин

Растительные гормоны могут действовать противоположно Это обусловлено концентрацией женских половых гормонов в крови и чувствительностью их рецепторов.

Если женщина имеет нормальный уровень эстрогенов, то растительные гормоны будут проявлять себя как антиэстрогены. Чем выше их концентрация, тем более выражен этот эффект. Поэтому, фитоэстрогены в таблетках не всегда положительно влияют на женский организм. В клинике для этих препаратов существуют определенные показания, такие как лечение предменструального синдрома и болезненных менструаций.

Влияние фитоэстрогенов на рак молочной железы остаётся спорным вопросом. Некоторые исследования (Д. Ингрема и соавторов, 1997 года) показали, что эти вещества проявляют защитный эффект, другие же эксперименты (М. Л. Де Лемос, исследование 2001 года) описывают, что фитоэстрогены стимулируют рост раковых клеток у женщин с перенесенным раком груди.

  • Влияние на мужчин

Исследование, проведенное в 2010 году Д. М. Гамильтоном-Ривзом и соавторами, показало, что добавление к продуктам питания изофлавонов или продуктов из сои не меняло показатели концентрации тестостерона у мужчин. Также не было изменений в морфологии, концентрации, количестве или подвижности сперматозоидов. Влияние фитоэстрогенов на развитие рака яичек остаётся спорным вопросом и по-прежнему не доказано.

  • Влияние детей и подростков

Считалось, что на маленьких мальчиков, особенно в период новорожденности и полового созревания, эстрогены растительного происхождения оказывают очень сильное феминизирующее действие. Поэтому рекомендовали мальчикам и женщинам в период беременности не злоупотреблять продуктами, в которых содержатся эстрогены. Но исследование Р. Д. Мерритта и Х.Б. Хенкса, которое опубликовано в 2004 году, доказало обратное. Обзор литературы сделал вывод, что кормление детей соевыми смесями не вызвало в дальнейшем проблем. Не было отклонений в сексуальном развитии, поведении или в функционировании иммунной системы.

Растительные эстрогены при менопаузе

После 50 лет у женщины может появиться целый ряд расстройств, включающий раздражительность, вялость, быструю утомляемость, депрессивное настроение, приливы жара, сердцебиение и другие симптомы. Одним из современных направлений лечения климактерических расстройств является заместительная гормональная терапия.

Так как прием гормональных средств в менопаузе иногда влечет за собой появление серьёзных побочных симптомов, женщины часто отказываются от этих препаратов и прибегают к помощи фитоэстрогенов. В основном применяются медецинские средства, содержащие изофлавоновые фитоэстрогены (например, Менорил, Климаксан, Ременс, Климадинон).

Так как в менопаузе наблюдается выраженное уменьшение концентрации гормонов, растительные вещества не действуют как антиэстрогены, тоесть для женщин после 40 лет их применение является относительно безопасным.

Фитогормоны потенциально могут оказывать следующие положительные эффекты:

  • уменьшают степень проявления климакса и действуют как легкая форма заместительной гормональной терапии;
  • снижают уровень холестерина в крови и артериальное давление;
  • уменьшают риск развития остеопороза;
  • могут снизить риск рака груди, толстого кишечника, простаты и кожных покровов.

Данные Опубликованные Э. Летаби и соавторами в 2013 году, растительные эстрогены для женщин после 40 — 50 лет заметно не облегчают симптомов менопаузы. При этом дополнительно необходимо провести исследование эффектов геницистеина, чье влияние окончательно не выяснено.

Фитоэстрогены в продуктах питания и лечебных травах применяются при различных гормональных нарушениях в гинекологии . Их бесконтрольное назначение может привести к тому, что они будут вести себя не так, как нормальные женские гормоны, а как антиэстрогены. Потенциал фитогормонов еще не исчерпан, и может быть раскрыт в ближайшем будущем.

Гормоны растений называются фитогормонами . Фитогормоны – это химические соединения, с помощью которых осуществляется взаимодействие клеток, тканей и органов и которые в малых количествах необходимы для регуляции всех процессов жизнедеятельности растений. Гормоны растений – это низкомолекулярные соединения, которые активны в очень низких концентрациях (10 -13 -10 -5 моль/л). Они, как правило, образуются в одной части растения, а транспортируются в другую, где и оказывают сильнейшее воздействие на процессы роста и развития растительного организма.

Несмотря на многообразие функций определенных гормонов, их можно объединить в две группы: гормоны-стимуляторы и гормоны-ингибиторы . К важнейшим стимуляторам относят ауксины, гиббереллины и цитокинины, а к ингибиторам – абсцизовую кислоту и этилен.

Ауксинами называются вещества индольной природы: индолилуксусную кислоту и ее производные. Предшественником ауксинов в растении служит одна из незаменимых аминокислот – триптофан. Синтез ауксина из триптофана находится под контролем других гормонов растений – гиббереллинов (они активируют синтез) и этилена (подавляет синтез). Ауксины синтезируются преимущественно в верхушеынх системах (точках роста) стебля и корны. Больше всего их накапливают растущие почки и листья, пыльца и формирующиеся семена. Сильное влияние оказывает ауксин на цветение, рост и созревание плодов растений. Ауксин, содержащийся в пыльце, необходим для роста пыльцевой трубки и, следовательно, для опыления растений. Транспорт ауксинов в растении происходит строго полярно: вниз по стеблю от верхушки побега к кончику корня – к зоне его растяжения. Сюда же вливаются и потоки ауксина из листьев. Ауксин – один из самых древних фитогормонов. Известно, что даже у примитивных жгутиковых организмов имеется регуляторное химическое соединение – серотонин, очень близкое по строению к ауксину, играющее роль внутриклеточного гормона. У высокоорганизованных животных серотонин является одним из нейромедиаторов. Ауксины используют в растениеводстве для стимуляции корнеобразования у черенков древесно-кустарниковых и травянистых растений (смородины, крыжовника, вишни, винограда, жасмина, розы и др.), а также для улучшения срастания привоя и подвоя при проведении прививок.

Гиббереллины . Название этих фитогормонов происходит от латинского названия гриба гиббереллы из класса Сумчатые (Gibberella fujikuroi). Этот гриб продуцирует гиберелловую кислоту, которая была открыта (в 1926 г.) в Японии. Гиббереллины синтезируются особо интенсивно в растущих (верхушечных 9-апикальных) стеблевых почках растений, в хлоропластах листьев, в формирующихся семенах, в зародыше прорастающих семян. Физиологические функции гиббереллинов разнообразны. Они оказывают сильное влияние на интенсивность митоза и растяжение клеток. Под действием гиббереллинов удлиняются стебель и листья, а цветки и соцветия становятся крупнее. У винограда образуются более крупные гроздья.

Мощное влияние оказывает гиббереллин на цветение растений. Оказалось, что для зацветания растений необходима определенная концентрация гиббереллина в тканях. Такая концентрация возникает либо при длинном световом дне, либо при низких температурах (при яровизации). Поэтому обработка гиббереллином ускоряет цветение длиннодневных растений: их можно «заставить» цвети даже при коротком световом дне.

Сильнейшее влияние гиббереллин оказывает на выход растений из состояния физиологического покоя. Семена и клубни многих растений после уборки находятся в состоянии покоя и не прорастают даже в благоприятных условиях увлажнения, обеспеченности кислородом и теплом. Однако обработка гиббереллином вызывает их прорастание.

Гиббереллин также пробуждает спящие почки зимующих травянистых и древесно-кустарниковых растений. Обработка гиббереллином позволяет, например, получить в середине зимы цветущие побеги жасмина, сирени или ландыша. Такой метод в растениеводстве получил название выгонки растений.

Высокая физиологическая активность гиббереллинов проявляется в период формирования сочных плодов. Как оказалось, развивающиеся после оплодотворения семена продуцируют гиббереллины, необходимые для роста и формирования плодов. Недостаток в этот критический момент активных гиббереллинов вызывает приостановку роста плодов. Дополнительная обработка гиббереллином, напротив, способствует формированию крупных бессемянных (партенокарпических) плодов у томата, винограда, перца, цитрусовых, плодовых семечковых и косточковых кульур.

Цитокинины. Цитокинины – фитогормоны, производные пурина, оказывающие сильное стимулирующие действие на рост и развитие растений. Основное место синтеза цитокининов – верхушечные меристемы корней. Они также образуются в молодых листьях и почках, в развивающихся плодах и семенах.

Примечательно, что цитокинины синтезируются не только растениями, но и некоторыми микроорганизмами, связанными с растениями. Так, клубеньковые бактерии, поселяющиеся на корнях бобовых растений. Обогащают их ткани цитокининами и ауксинами, что приводит к притоку питательных веществ и образованию клубеньков.

Цитокинины в растениях стимулируют деление клеток, ускоряют рост клеток двудольных (но не однодольных) растений в длину, способствуют их дифференцировке. В основе физиологической активности цитокининов – усиление синтеза ДНК, белка, роста и развития хлоропластов и других органелл клеток. Цитокинины стимулируют рост и развитие побегов, но угнетают рост корней. В этом их отличие от действия ауксинов.

Подобно гиббереллинам, цитокинины обладают высокой «пробуждающей» способностью: они выводят из состояния глубокого покоя семена и клубни, спящие почки деревьев и кустарников, повышают всхожесть семян гороха, кукурузы, ячменя и многих других растений.

Цитокинины задерживают старение листьев, усиливают поступление в ткани питательных веществ, благодаря чему происходит восстановление структуры хлоропластов, усиливается синтез в них хлорофилла, РНК и белка. Повышается интенсивность фотосинтеза.

Абсцизовая кислота . Если ауксины, гиббереллины и цитокинины – это стимуляторы роста и развития растений, то абсцизовая кислота – важнейший растительный ингибитор широкого спектра действия. Абсцизовая кислота (АБК) синтезируется практически во всех органах растений, особенно в стареющих. АБК является антагонистом гормонов-стимуляторов. Так, переход в покой семян, клубней, луковиц и почек связан с увеличением содержания в них АБК.

Как оказалось, растение реагирует на укорочение светового дня и приближение зимы ускорением синтеза АБК. В этот период повышается содержание этого гормона в зимующих органах многолетних бобовых и злаковых трав, озимых зерновых. Одновременно подавляется активность ауксинов, гиббереллинов и цитокининов. Это предотвращает чрезмерную физиологическую активность растений, готовящихся к зимовке.

Старение растений и созревание плодов томата, земляники, груши, винограда и других культур связано со значительной концентрацией АБК: фитогормон ускоряет распад белков, нуклеиновых кислот, фотопигментов.

Как оказалось, абсцизовая кислота участвует в таком важном процессе, как регуляция работы устьиц. При обезвоживании листьев содержание в них АБК быстро повышается. Это заставляет устьица закрываться, что приводит к снижению транспирации.

Динамическое равновесие в растительных клетках между тормозящим действием АБК, с одной стороны, и стимулирующим эффектом ауксинов, цитокининов и гиббереллинов, с другой стороны, служит необходимым условием нормального роста и развития растений. Создается своеобразная система взаимного сдерживания гормонов-антагонистов, в результате чего метаболизм растительного организма приобретает необходимую устойчивость.

Этилен. Гормональным фактором растительного организма служит хорошо известный газ этилен. Он образуется из аминокислоты метионина практически в любом органе растений, но все же наиболее высока скорость его биосинтеза в стареющих листьях и созревающих плодах. Физиологические функции этилена в растении многообразны. Этилен способствует старению тканей и тем самым ускоряет опадение листьев и плодов. В случае локальных повреждений растение синтезирует так называемый «стрессовый этилен», который способствует отторжению поврежденных тканей. Этилен увеличивает покой семян, клубней и луковиц, а также ускоряет созревание плодов. Поэтому этилен используют для ускорения дозревания плодов, для чего их помещают в специально герметично закрытые камеры, заполненные этим газом.

Этилен оказывает влияние на генеративные органы растений, в частности способствует смещению пола двудомных растений в женскую сторону. Это приводит, например, к изменению соотношения женских и мужских цветков огурца и способствует повышению его урожайности. Этилен, как газообразное соединение, обладает высокой подвижностью в растительных тканях. Поэтому, быстро распространяясь по растению, он оказывает регулирующее воздействие на работу других фитогормонов, усиливая или, наоборот, подавляя их физиологическую активность.

Таким образом, гормональная система растений является многокомпонентной. Соотношение гормонов-активаторов и гормонов-ингибиторов закономерно изменяется в процессе индивидуального развития растений, а также в ответ на изменение экологических факторов. В связи с этим исключительно велико значение фитогормонов для повышения устойчивости растений к неблагоприятным факторам. Общая закономерность такова: в случае стрессового воздействия преобладает роль гормонов-ингибиторов (абсцизовой кислоты и этилена), а при выходе растения из стрессового состояния и переходе к нормальной жизнедеятельности – гормонов-активаторов (ауксинов, гиббереллинов и цитокининов).